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Anti-resonance approach to soft tunnelling centres 

W Junker and M Wagner 
Institut fur Theoretische Physik, Universitat Stuttgart, Pfaffenwaldring 57,7000 Stuttgart 
80, Federal Republic of Germany 

Received 5 December 1988 

Abstract. In recent years various theoretical methods have been used to handle the fun- 
damental decay problem of the archetypal Hamiltonian in quantum diffusion. In our study 
we determine the fundamental Green function (GF), which governs the decay, by an anti- 
resonance ansatz and a factorisation procedure beyond Hartree-Fock. The resulting GF is 
able to satisfy rigorous frame requirements (high-temperature expansions, sum rules, low- 
temperature laws derived from ab initio calculations). The spectral and temporal decay 
behaviour according to this GF is discussed for various coupling laws. In the case of ‘Ohmic 
dissipation’ (linear power-law coupling) we find a cross-over temperature, depending on the 
coupling strength, above which coherence disappears, the diffusion constant displaying a 
Pza-l behaviour in the intermediate temperature region. 

1. Introduction 

Tunnelling centres coupled to a ‘soft’ surrounding of elementary excitations (phonons, 
electronic excitations, etc.) have experienced much theoretical attention during the last 
20 years. In the first stages of these studies para-electric (para-elastic) centres were the 
central physical object of interest [1-4]. Later additional motivation for the study grew 
up in the context of glasses [ 5 ] .  On the other hand these centres have always been 
considered as a prototype for discussing quantum diffusion in solids [2], and there has 
been much recent activity in this particular field [&lo]. 

In almost all theoretical approaches a two-site Hamiltonian of the form 

has been employed, where the pseudo-spin operators are projectors in the ‘left-right’ 
space of the tunnelling particle, 

a x  = (1/2)(IO(ll - Ir)(rl) 

ay = (1/2i)( I O(rl - I 
az = - (1/2)( I O(rl + I r)(lI ) 

(2b) 

(2c) 

and Qk,  Pk are the coordinates of the modes of the surrounding medium. These operators 
satisfy the commutation rules [ek, Pk’]- = and [a,, ay]- = io, etc. In most papers 
a coupling of the form 
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p ( Q ) 0 2 ( Q ) Q 2  = 4 a Q D ( Q / n D I m  0SRSQ;ZD (3) 

has been adopted, where p ( Q )  is the frequency density and Q, is the Debye (= cut-off) 
frequency of the bath modes. For phonons normally m = 3 has becn taken [ 111, whereas 
in those cases where electronic excitations play the role of the bath, m = 1 (‘Ohmic 
dissipation’) is considered adequate [7]. 

Many different theoretical techniques have been invoked to handle both the 
dynamics and thermodynamics of these centres (golden rule, Green functions (GFS), 
Mori formalism, path integrals, etc.), A particular difficulty of the GF method in this 
context is the inadequacy of the Hartree-Fock (HF) type of factorisation procedure, 
which in many other examples of coupled systems has proved successful. 

The aim of the present paper is to find an appropriate way of by-passing the HF 
factorisation and overcoming its main faults. 

2. Zubarev Green functions 

We employ Green functions of the Zubarev type [12] defined by 

((A(t) 1 B(t’)))(rla) = t io( *( t  - t’))([A(t), B(t’)] - )F 
+X 

= ((A dw. (4) 

The general equation of motion for the Fourier-transformed Zubarev GF 

((A 1 ( E  = w i ie, e = 0,) reads 

E((AIB))E = (1/2~r)([A, B]-)F + (([A, HI- IB))E 

E((A B))E = (1/2n)([A > B]  - )B -- ((A I [B ,  HI - ) ) E +  

( 5 7 )  

(5h)  

or alternatively 

As shown later, the whole dynamics and thermodynamics of soft tunnelling centres may 
be traced back to the GF ((0, I oJE. Employing (5a) we get the hierarchy 

EGJ, I U,))€ = -WO, i ox))E 
E((oy 1 0, ))E = -(i/2n)(%)? + iA((o,[ ox ) )E  - i 2 

(6) 
(7) k D k ( ( 0 . z  Qk  I o x ) ) E .  

k 
We now apply (5b) to get 
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At this stage we use the identity ( [ A ,  HI-)? = 0, which yields 

{uY Q k > B  = 0. 

Then from (lo), (11) and (12) we finally are left with 

5067 

(12) 

which is the crucial equation for our further discussion. By virtue of the existence of the 
bath we may assume that ((U,\ u , ) ) ~  has no pole for E-+ F A .  Hence the LHS of (13) 
disappears for E+ ?A. Since the first term of the RHS is a constant we therefore must 
conclude that the expression in parentheses must be proportional to ( E 2  - A*) in the 
neighbourhood of E + -+A , whence we may write it in the form 

This is a beautiful manifestation of the anti-resonance behaviour of certain bath GFS as 
first discovered by Fano [13]. However, G,(E)  is still an unknown function. We know, 
however, that it is finite at E = +-A and has the limiting value 

Inserting (14) in the anti-resonance equation (13) we have 

A stringent prerequisite for the evaluation of the unknown function Gl(E) is the require- 
ment that the GF ((U, I u,))~ must satisfy the Kramers-Kronig relation. Generally we 
define the spectral function ZAB( U) of a Green function ((A 1 B))E as 

(17) 
i 

IAB(W) = c ~ o +  lim [((A/B))u,+ic - ((A/B))u,-icl. 

Then, sinceA = A' = ax = B ,  Zu,o,(~) must be a real function for which the fluctuation- 
dissipation theorem assumes the form 

Im((u, 1 u,)),+ie = - ;(e@ - l>~O,U,(4. (18) 

The Kramers-Kronig relation then reads 
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A very flexible form which is shown below to satisfy (19) is established by the ansatz 

where Ao, Br, Ar are real constants. Inserting (20) in (16), ( ( 0 ~ 1  ox))E transmutes into 

where 

Ai = A 2  + (23~A/(-0,))Ao (22a) 

AsArVf  = Bf2nA/(-aZ). (22b) 

In the next section we will show that the structural form (21) is just the same as the 
one that also appears in the oscillator-bath problem. In this manner it automatically 
guarantees the validity of the Kramers-Kronig relations and of the fluctuation-dis- 
sipation theorem. The oscillator-bath problem is one of the few exactly solvable multi- 
mode problems [14-161. In particular it permits a simple calculation of the lower sum 
rules. In this manner the sum rules can be adopted as a means to determine the yet 
unknown parameters Ao, A,, Br. 

3. Exactly solvable sister problem (oscillator-bath) 

The oscillator-bath problem is characterised by the Hamiltonian 

H o b  = iAs(p? + 4: )  -k 4 2 Ar(p?  + qf) + 2 vrqrqs. (23) 
r r 

The decay problem (qs(0)qs(t)) pertinent to this Hamiltonian is one of the very few 
exactly solvable models in statistical physics and has been handled by Ullersma [14], by 
Louise11 and Walker [ 151, and more recently by one of us [ 161, The GF ((qs I qs))E can be 
obtained from the hierarchy of equations of motion 

m q ,  = i4 ( (Ps  Iqs))E (24) 

~ ( ( p s  I q s ) ) E  = - (i/2n) - i~ s ( (qs  Iqs ) )E  - i E Vr((qr Iqs))E (25) 
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and thus is seen to be just of the form found for ((a,[ ax))E (see expression (21)) 

((a, IOx))E = (A(-%)/As)((qs I q s h  (29) 
if we keep to the identifications (22a, b). In this manner we have traced back the 
tunnelling problem to the exactly solvable oscillator-bath problem. We have to bear in 
mind, however, that the effective quantities {Ar, Vr} must not be identified either in size 
or in number with the set of quantities { Q k ,  Dk} of the original bath attached to the 
tunnelling problem. Additionally, the quantities {Ar, Vr} may depend on temperature. 

4. Sum rules 

In our context the great efficacy of the return to the oscillator-bath problem lies in the 
fact that the odd sum rules for Z4s4s(o) are of a particularly simple nature. The spectral 
function ZAB(w) of the Zubarev GF ((A I B))E is the Fourier transform of the correlation 
function (B(O)A(t))? : 

+ffi 

(B(O)A(t)):! = ZAB(O) e-'@' d o .  

From (30) we can derive the moments M$$ for ZAB(o), if we invoke the Heisenberg 
equation and choose t = 0: 

+a 

M f L  E I, ZAB(O) dm = ( B  .A)?  (31a) 

(31b) 
+- 

ZAB(W)W dm = ( B  * [ A ,  HI)? = ( [ H ,  B]  .A)?  

+X 

Mgh ]-ffi Z A B ( U ) U ~  dm = ( B  [ [ A ,  H ] ,  HI)? = ( [ H ,  [ H ,  B ] ]  * A ) ?  

= ( [ H ,  BI ' [ A ,  HI)?. (314 
Specifically for the spectral function Zo,o,(o) of the tunnelling problem we have from 
(31): 

MKL, = 1/4 (32a) 
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Up to this stage both the sum rule formulae for the spin-bath as well as for the 
oscillator-bath problems have been exact. We now return to our original motivation for 
introducing the oscillator-bath problem, which has been the ansatz (20 ) .  Via this ansatz 
the spin GF ((ax 1 a,)) has been traced back to an effective oscillator-bath problem charac- 
terised by the parameters {As, A,, V,}. Since in the formulae above we have derived the 
exact moments both for the spin-bath and the oscillator-bath problems, we may employ 
the identification (29)  to determine the effective quantities {AJ, A,, Vr}.  Translated to 
the moments, (29)  reads 

Employing (32)  and (33)  we get from (34)  for the odd moments 
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Obviously, the first of these equations is automatically satisfied. From (35b) we find 

A? = A 2  + (A/(az)) E Q~kDk(a,Qk).  (36) 
k 

The fifth moment could be employed to determine the sum XrVfAr ,  etc. In this manner 
the unknown quantities {As, Ar, Vr} are expressed by means of thermal expectation 
values of the spin-bath problem, such as (a,), &DkSZk(a,Qk), etc. Naturally these 
expectation values are not known up to now, but we also have not yet used the even sum 
rules of the sets of equations (32) and (33). If we confine ourselves to be correct up to 
the third moment inclusive, the odd sum rules leave undetermined the quantities {Ar, V,} 
and (a,), zkDkQk(a,Qk).  These quantities are interconnected by the requirement that 
the zeroth and second moments must be satisfied. This still leaves open a great flexibility 
for the choice of {Ar, Vr}. But in the next section we will present a simple way to fix these 
parameters. 

5. Factorisation beyond Hartree-Fock 

We return to equation (10) of § 2: 

( E 2  - A2)((a, 10,))~ = - (A(az)/2n> - A E Q k D k ( ( a Z Q k  ~0,))~. 
k 

The most simple way to close the hierarchy of equations of motion piling up in the 
continuation of this equation would be a kind of HF factorisation: 

( ( 0 z Q k  10,))~ = (a,>Q((Q, 10,))~. (37) 

This type of factorisation has proved fruitful in many other systems and it has also been 
used in an earlier approach to the tunnelling problem [lo]. However, in the mode- 
assisted tunnelling system, it turns out that this factorisation violates even the lowest 
sum rules. In order to find an appropriate factorisation we have to keep track at least to 
the lowest moments of the spectral function pertaining to the GF ((o,Qk 1 aJE,  

etc 
where (12) has been used. On the other hand the moments of the spectral function of 
the GF ( (Qk I 0,))~ are 

Since M&.ux(aZ) # 0, already the lowest sum rule of the HF factorisation (37) is violated. 
We therefore have to search for an improved factorisation. A first option in this direction 
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would be to try to correct the shortcoming of the HF approximation (37) by an addition 
of the basic GF ((a, I a,))€ itself 

((OzQk 1 OX))€ = V((Qk 1 0 , ) ) ~  + (((OX 1 OX))€ (40) 
where the two real parameters 7 and ( are determined by the requirement that the 
lowest two sum rules of (40) be preserved. This then yields 

MO : 0 = V(oxQk)? + ((1/4) (41) 

MI : (42) - (A/2)(aX e,)? = 11 * 0 4- ((A/2)(Oz). 

So we finally reach a factorisation of the form 

Themost striking featureofthis formulais the fact that (a,)? appearsin thedenominator, 
which is the inverse behaviour as in the Hartree-Fock factorisation (37). Consequently, 
the thermal behaviour of physical properties such as the damping or the tunnelling 
frequency of the diffusion process is quite different, not to say opposite, to the results 
based on (37). 

Equation (43) permits us to continue the hierarchy of equations of motion: 

E((Qk I  ax))^ = iQk((Pk 10,))~ 

E((Pk I 0 , ) )~  = -iak((Qk 1 0 , ) ) ~  - iDkQk((Ox 1 ~ X > ) E .  

(44) 

(45) 

Combining (44), (45) and (43) we have 

which inserted in (10) yields 

- (A/4(-az)) D:Qi/(E2 - Q:)}-’. 
k 

(48) 

This result has just the form of (21) if we identify the set of parameters {A,} with (52,) 
and further 

This establishes the connection with the results of the preceding section; we observe that 
A$ as given by (49) coincides with the one found in the last section (see (36)) in a 
completely different manner. Additionally we have achieved our aim of fixing the 
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parameters, which have remained free in the last section. In this manner we have closed 
our formalism: the only two unknown quantities (a,) and ZkDkQk(uxQk) are found by 
self-consistency . 

In closing we add that in a next step a further suitable term could be added to the 
ansatz (40), which would establish the flexibility of satisfying still higher sum rules. 

6. Self-consistency procedure 

We return to the zeroth and second moments of the spectral function lOX0,(w), which is 
obtained from (48) via definition (17): 

1 
eow - 1 

X- 

where 

Here we have replaced C k  . . . by an integral, where p(S2) is the frequency density and 
QD the Debye frequency of the bath in (1). Then for the moments of Zu,ux( w )  we find 

'0 

Q D  
MF;;, = A ( - a , ) L  S(w)w2" coth(pw/2) d u  (54) 

with 

Inserting the exact values of the zeroth and second moments of Zo,o,(w), MbO?,x = 1/4 
and MFiUx = A2/4 (see equations (32)) on the LHS of (54), we get two self-consistency 
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conditions for the determination of the unknown thermal expectation values (az) and 
xkDkQk(Qk0x): 

A(-az) IoQD S(w) coth(pw/2) d w  = 1/4 

A(-a,) loQD S(w)w2 coth(Pw/2) d o  = A2/4. 

In the limit A --f 0 we have (oxQk)B +. -Dk/4 and hence 

= aQD/m ( 5 8 )  
where we have used the coupling law (3). So it proves useful to introduce a quantity B 
by means of the definition 

2 QkDk(axQk)f = - ( a Q ~ / m ) ( l  - B).  (59) 
k 

B will turn out to be a small quantity ( B  Q 1) for all cases of practical interest. We 
now consider again the power-law coupling set-ups of (3) and further introduce the 
abbreviations 

X, = A/QD x = w/QD E = a/(-%>. (60) 
Then the self-consistency equations (56)-(57) for (a,) and B read (m = 1 or 3) 

S Q D  
1 

(-0,) [ gx:xm c o t h ( l  x ) 1 / 2  dx  = 4 
0 

where 

So for any given values of the coupling strength a and of the temperature the cor- 
responding values of (- a,) and B can be calculated numerically. The result for (- a,) is 
illustrated in figure 1 for m = 1 (Ohmic dissipation). The broken curve indicates the 
cross-over from coherent to non-coherent behaviour. This will be explained in 0 8 in 
more detail. For m = 3 the qualitative behaviour is similar, but there is no cross-over 
line. 

7. Additional counter-check by Goldberger-Adams expansions 

Beyond the virtue that our spectral function Zox0,(w) satisfies the lowest four sum rules 
and-as can be seen by inserting A, and {A,., V,.},. in (35c)-also the fifth moment, if 
(A, a, 7') are not too large, we have the additional option of counter-checking the self- 
consistency requirements (61) and (62) themselves by exact series expansions. Applying 
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0 0.1 0.2 
U U 

Figure 1. (-a,)! as a function of temperature and 
coupling strength for Ohmic dissipation, i.e. m = 1 
( p =  k,T/A;  x, = A/QD = 0.1). The brokencurve is 
the cross-over line. 

Figure 2. Cross-over temperature as a function of the 
coupling strength afor Ohmicdissipation, i.e. m = 1 
(xs = A/QD). 

the Goldberger-Adams theorem [ 171 we can derive such expansions for all thermo- 
dynamic properties of Hamiltonian (1) in the whole temperature range. The details of 
this calculation are given elsewhere. Specifically it can be shown that for small a the 
internal energy U = (H); and the specific heat C = 8 U/d T of this Goldberger-Adams 
(GA) expansion are in exact agreement up to the leading coupling term with the cor- 
responding quantities deduced from our GF ((U, I u, ) )~  or Zoxox(o) respectively. Further- 
more the thermal expectation value ( a , ) ~  and the quantity B of the GA and GFCalCUlatiOn 
are the same in the whole temperature region; in the intermediate temperature regime 
A < kBT < QD one gets for instance 

r 

and 
r 

form = 1 (In 7 P Q D  + pa, 2 - :) + o(a) 

4 80 1 
form = 3. 4 

8. Temporal and spectral behaviour 

We now want to apply the GF ((a, I u,))~ of (48) or the corresponding spectral function 
ZUx,,, to the diffusion problem attached to Hamiltonian (1). According to (2a) U, describes 
the occupation difference between ‘left’ and ‘right’. The diffusion process can be charac- 
terised by the relaxation behaviour of (a,)(t) after a non-equilibrium occupation (a,)(t = 
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0) # 0 has been established via adiabatic symmetry breaking. This situation is described 
by an additional Hamiltonian term H , ( t ) ,  

H , ( t ) =  --Aa,eEt6(-t) (6 is the step function, E = 0,) (65) 

which yields the Kubo time evolution 

Hence all the details of the decay are incorporated in our GF ((a, I a,))E. The quantity 

can be considered as the Fourier transform of (a,)(t). Via (17), the function R(w)  is 
directly related to the spectral function ZO,,,,(o) via 

and from (51) and (55) we have 

Adopting the power-law coupling of (3) again, we are left with (m = 1 or 3) 

where x = w/QD and B is defined below (62). To derive simple analytic expressions we 
simplify the denominator of Zuxux by means of the argument that the tunnelling frequency 
A (i.e. x, = A/QD) will be a very small quantity, whence we may expect the region far 
below the cut-off frequency QD to play the dominant role. We therefore write 

Inl(1 + x ) / ( l  - x ) I  (71) 

whence for Ohmic dissipation (m = 1) we are left with 

where 

The relaxation behaviour of (a,)(t) is determined by the poles of R(o) or ZO,O,(o) 
respectively. From (72) we learn that for a2 < b2/4 the poles of ZO,O,(o) are purely 
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I .  
0 2 4 6 

i 
Figure 3. Tunnelling frequency Aeff and damping z-' Figure 4. Damping or inverse relaxation time z-l as 
as functions of temperature for a = 0.05 and Ohmic a function of temperature for a = 0.2 and Ohmic 
dissipation, i.e. m = 1 (xs = A / C Z ~  = 0.1; t = dissipation, i.e. m = 1 (xr = A/QD = 0.1, t = 

kBTlA). ksT/A) .  

imaginary ones which produce a non-oscillating, exponentially damped decay behav- 
iour. On the other hand, a2 > b2/4 yields complex poles which correspond to an oscil- 
lating relaxation of (a,)(t). For a2 = b2/4, which is equivalent to 

we have a cross-over from oscillating to non-oscillating relaxation. Inserting (74) in the 
self-consistency equations (61)-(62) we obtain the Tc(a) lines illustrated in figure 2. In 
the high-temperature limit the cross-over line follows the analytic relation 

A A 
(75) 

In the oscillation regime, i.e. for small a and temperatures below T,(a), the relaxation 
reads 

A ax,' n 
[ u c o s ( u ~ ~  t)  + U sin( uQ D t ) ]  e (ox)(t)=G(l - x , ~ ~ ) ~ ~ u u ( u ~  + u 2 )  

with 
U = ( ( a 2  - b2/41)'i2 U = b/2 (77) 

where (?U ? iu)QD are the poles of Zo,o,(w). The temperature behaviour of the tun- 
nelling frequency Aeff = uQ, and the damping r-' = uQ,  is given in figure 3. The 
damping shows an almost linear increase, whereas the tunnelling frequency decreases 
and turns to zero at the cross-over point. 

In the non-oscillation region the poles are *i(u + u)QD, 4i(u - u)QD, whence we 
are left with 

Hence the dominant relaxation time t is given by 

This is illustrated in figure 4 for a = 0.2; we note that the damping t - l  decreases for 
T >  1. 

T-' = ( U  - u ) Q D .  (79) 
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15 

-0 .I 0 0.1 -0.1 0 0 1  -0 1 0 0 .I 
W/Ro w/n 0 W / n D  

Figure 5.  Spectral function imm(u) = 2QDI,,(w) for different couplings and temperatures 
(Ohmicdissipationm= l ; x , =  A/QD=0.1;~=k,T/A):(a)rr=0.2,(b)rr=0.05,(c)cr= 
0.1. 

The qualitative relaxation behaviour can also be seen from the spectral function 
Zo,o,(w). In figure 5 these lines are given for different values of a and temperature. 
Figure 5(a) for instance shows the ‘central peak’, which is typical for a non-oscillating 
decay. Figure 5(b) reveals the oscillating behaviour of a small avalue, whereas in figure 
5(c) the transition from oscillation at low temperature to a central peak non-oscillating 
behaviour at high temperature (i.e. the cross-over) can be observed. 

To evaluate analytical expressions for the relaxation time, we should know (a,) and 
Bas functions of the coupling strength and temperature. In the intermediate temperature 
regime A 6 kBT 6 QD these quantities are given by (63a, b )  and (64~7, b). In the Appen- 
dix we show that (for A 6 kBT < Q,) the damping is given by 

1 
1 - L  k g T -  T in the oscillatory regime (80) t - l  - - an- 

3a 

and 

Ax 
in the non-oscillatory region. (81) 

na 

Let us now consider the coupling case m = 3, where, neglecting the In term (which is of 
order x4), we arrive at 

The denominator is then a polynomial of third degree in x2, whose zeros can be found 
exactly by means of the Cardini formulae. A straightforward calculation yields that there 
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0 1 2 0 1 2 
i i 

Figure 6.  Tunnelling frequency Aeff and damping t-’ as functions of temperature for CY = 0.2 
and m = 3 coupling (x, = A/Q, = 0.1; f = k , T / A ) .  

is no cross-over temperature as in the case m = 1 and that the relaxation behaviour of 
(a,)(t) is always an oscillating one: 

where the tunnelling frequency 
t - l ,  are 

Aeff and the damping, i.e. the inverse relaxation time 

The temperature dependence of Aeff and t-’ for a = 0.2 due to (84) is illustrated in 
figure 6 (the values of B and E for given temperature have been calculated from (61)- 
(62) by self-consistency). We recognise that Aeff is almost independent of T ,  whereas 
the damping obviously shows an almost linear increase. In the intermediate temperature 
region A G kBT G QD the damping t-’ is given by (85) (see Appendix), if a is not too 
large: 

9. Summary and discussion 

In this paper we have presented a Green function approach to handle the fundamental 
decay problem attached to the archetypal Hamiltonian ( l ) ,  which has been studied by 
many workers during the past 30 years. We have given a procedure for how to trace back 
the fundamental GF ((a, I O , ) ) ~ ,  which governs the diffusive process to the GF of an 
exactly solvable oscillator-bath problem with temperature-dependent constants. These 
parameters in principle could be determined in such a way that the sum rules of the 
spectral function Zo,o,(w) up to a desired order be preserved. If we confine ourselves to 
the lowest four moments of ZUx,,, the corresponding Green function ((a,l a,))E can be 
obtained by a factorisation beyond Hartree-Fock. In addition to subject our ansatz the 
frame provided by the sum rules we have counter-checked our calculation by comparison 
with Goldberger-Adams expansions. 

In the second part of our paper we investigate the decay process by a Kubo response 
formalism based on our GF ((a, 1 ox))€. In the case of Ohmic dissipation coupling we find 
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that for weak coupling the decay is an exponentially damped oscillating one below some 
critical temperature T,. If A is small enough such that A < kBT< kBT, the diffusion 
constant follows a T' law. Above this cross-over temperature (or, if the coupling a is 
strong enough, in the whole temperature range) the relaxation process is a non-oscil- 
lating one. In this case the diffusion decreases according to a law in the inter- 
mediate temperature region A e kBT < QD. For m = 3 coupling we find no cross-over 
temperature and a damped oscillatory decay in the whole a/T  range. 

Since the presented tunnelling model for the Ohmic dissipation coupling set-up 
presently experiences prominent research activity, the result of a behaviour of 
the diffusion constant has been found in many different ways [3,18,19] in succession to 
the Kondo derivation [7]. This result also seems to be justified by experiments [20-241. 
However, up to the present, a Green function approach, which for many other decay 
problems has proven successful, has failed to display its power for the tunnelling prob- 
lem. Therefore the motivation for our work has been to find a key to apply the Green 
function technique also here. We have found that the archetypal model of mode-assisted 
tunnelling satisfies a rigorous anti-resonance condition between the spin and bath Green 
functions, which provides, in combination with sum rules, a possible key. 

Appendix. Analytical expressions for the relaxation time 

We first turn to the case m = 1, where in the oscillation region (for weak coupling) the 
damping is given by 

Jz x s f  A a 
4 1 - x s f -  4 (-0,) - x s a  

t - L v Q , = Q , - - - - J z  

Inserting (-a,) according to (63a) we get in the intermediate temperature region 
A < kBT QD 

For 2 s p&, s 10 the term in parentheses is nearly a constant, the value of which is 
about f ; so the inverse relaxation time is given by 

In the non-oscillation region the damping is given by (79); because a2/b2 4 1 we can 
approximate 

With (63a) and (64a) we arrive at 

By the same argument we have just used above, this expression can be simplified to 



Anti-resonance approach to soft tunnelling centres 5081 

Form = 3 we have from (63b), (64b) and (84) 

which for small a can be simplified to 
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